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The effect of an insoluble surfactant on the stability of two-layer viscous flow in an
inclined channel confined by two parallel walls is considered. A lubrication-flow model
applicable to long waves and low-Reynolds-number-flow is developed, and pertinent
nonlinear evolution equations for the interface position and surfactant concentration
are derived. Linear stability analysis based on the lubrication-flow model and the
inclusive equations of Stokes flow confirm the recent findings of Frenkel & Halpern
(2002) and Halpern & Frenkel (2003) that the presence of an insoluble surfactant
induces a Marangoni instability in certain regions of parameter space defined by the
layer thickness and viscosity ratios. Numerical simulations based on both approaches
show that the interfacial waves may grow and saturate into steep profiles. The
lubrication-flow model is adequate in capturing the essential features of the instability
for small and moderate wavenumbers.

1. Introduction
Frenkel & Halpern (2002) and Halpern & Frenkel (2003) recently discovered that

the presence of an insoluble surfactant on a sheared interface induces a Marangoni
instability even in the absence of fluid inertia. In particular, they demonstrated that
a quiescent interface may become unstable as soon as it is subjected to a local shear
flow due to periodic accumulation of surfactant and accompanying spatial variations
in surface tension. In the first part of their work, Frenkel & Halpern (2002) carried
out a linear stability analysis of two-layer Couette–Poiseuille channel flow, considering
the limit of long waves and vanishing Reynolds number. Subsequently, Halpern &
Frenkel (2003) extended the analysis to perturbations of arbitrary wavelength, and
identified the regions of instability in parameter space consisting of the layer thickness
and viscosity ratio, under the assumption of Stokes flow.

Halpern and Frenkel’s work can be regarded as an extension of Yih’s (1967) classical
analysis on the interfacial instability of parallel flow due to viscosity stratification in
the absence of surfactants. Yih and subsequent authors demonstrated that, when the
fluids are neutrally or stably stratified, instability occurs only at non-zero Reynolds
numbers, however small (e.g. Pozrikidis 1997a, 1998a, 2004). One important difference
between Frenkel & Halpern’s Marangoni instability and Yih’s instability is that in
the former waves grow even under conditions of Stokes flow. Moreover, increasing
the viscosity contrast does not necessarily amplify the growth rates.
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In related work, Thaokar & Kumaran (2002) considered the Couette flow of two
layers in a channel, where the fluids are separated by a thin, impermeable elastic
membrane. The interface develops elastic tensions according to the local membrane
strain, and viscous tensions according to the local rate of deformation. By carrying out
both a linear and weakly nonlinear analysis, the authors showed that, in the limit of
zero Reynolds number, the initially flat interface loses stability to growing modes with
small wavenumbers. In this problem, the spatial variation in the interfacial tension is
due to the elastic properties of the membrane rather than to changes induced in the
local surface tension by the presence of a surfactant. The mechanism for instability is
therefore somewhat different than the one associated with the Marangoni instability.

The findings of Frenkel & Halpern (2002) and Halpern & Frenkel (2003) put
the spotlight on a physical situation where the normally stabilizing action of a
surfactant may have an adverse effect. Although surfactant hydrodynamics has been
discussed extensively in the literature both from a fundamental and an applied point
of view, the broad implications of a surfactant-induced instability do not seem to
have been fully appreciated. Indeed, it is generally accepted that surfactants have
a stabilizing influence on interfacial shapes in the presence or absence of a base
flow. The underlying reasoning is that surfactants lower the surface tension and
thereby diminish the intensity of capillary forces causing interfacial distortion. Thus,
surfactants are added to the biological film coating on the inside of a cylindrical tube,
such as the mucus lining the bronchioles, to delay the onset of a Rayleigh capillary
instability leading to airway closure.

A consequence of lowering the surface tension by the use of surfactants is the
development of surface tension gradients and accompanying Marangoni tractions.
Evidence for the possible destabilizing influence of the latter is available directly from
the recent analysis of Frenkel and Halpern, and indirectly from stability analysis
of gravity-driven film flow. Regarding the latter, Ji & Setterwall (1994) studied the
stability of film flow down a plane wall including the effect of a soluble surfactant, and
discovered the existence of an unstable normal mode related to Marangoni tractions
at low Reynolds numbers and for moderate- and short-wavelength perturbations.
More recently, Pozrikidis (2003) studied the stability of a film down an inclined plane
in the presence of an insoluble surfactant in Stokes flow, and identified a Marangoni
normal mode whose rate of decay is lower than that of the usual mode for a clean
free surface. It is possible then that inertial effects will first destabilize this mode,
effectively lowering the threshold Reynolds number for stable unidirectional motion.

In this paper, we reconsider the influence of an insoluble surfactant on the
interfacial stability of two-layer channel flow, with several objectives: to confirm
the instability discovered by Frenkel and Halpern, to generalize the linear stability
analysis by including the effect of gravity and surfactant surface diffusivity, to develop
a lubrication-flow model applicable to long waves, to describe the properties of the
normal modes and thus provide a physical reasoning for the onset of the Marangoni
instability, and finally to illustrate the nonlinear dynamics of the finite-amplitude
motion in the limit of vanishing Reynolds numbers. Numerical simulations are
conducted using both the lubrication-flow model and the boundary-element method
for Stokes flow.

The linearized analysis is first performed for arbitrary wavenumbers, with the linear
growth rates being computed exactly, and then under the auspices of the lubrication
approximation applicable to small wavenumbers. Our approach in the second case
differs from that of Frenkel & Halpern (2002) in that the evolution equations are
derived by linearizing the lubrication-flow model instead of introducing wavenumber
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Figure 1. Definition sketch of two-layer flow in a channel, showing the position of the
unperturbed and perturbed interface described by y = yI (x, t); the unperturbed interface is
drawn with the broken line. The unit normal to the interface, n, points into the lower fluid
labelled 1; the unit tangent, t , points in the direction of increasing arc length l. The lower and
upper walls are free to move parallel to themselves with velocities U1 and U2.

expansions in the Orr–Sommerfeld equation for Stokes flow. The range of validity
of the approximate results for long waves will be assessed, and the veracity of both
analyses will be confirmed by comparison with numerical solutions of the governing
equations for small-amplitude perturbations.

We shall present numerical simulations that extend the linear stability analysis into
the regime of finite-amplitude motion. The model equations derived under the long-
wave approximation are solved using explicit time-marching finite-difference methods,
while those for Stokes flow are solved by means of a boundary-integral technique
combined with a finite-volume method for integrating the surfactant transport
equation. The consistency of the results obtained by the lubrication-flow model
and the boundary-integral solution will validate both approaches and corroborate the
accuracy of the former as a simple means of describing the evolution under relevant
flow conditions. The results will suggest that, under certain conditions, the instability
saturates, leading to a disturbance wave of fixed amplitude, while overturning occurs
under other conditions.

In § 2, we pose the physical problem, state the governing equations, and
identify dimensionless parameters determining the instability. In § 3, we develop the
lubrication-flow model and study the linear and nonlinear dynamics of the long-
wave motion. In § 4, we compare the growth rates predicted by the lubrication-flow
model with those arising from the linear stability analysis for Stokes flow, and in
§ 5, we discuss the results of numerical simulations based on the boundary-element
method. Appendix A contains an outline of the stability analysis for Stokes flow, and
Appendix B a brief description of the boundary-element method.

2. Problem statement
We consider the unidirectional flow of two superimposed viscous layers in an

inclined channel that is confined by two parallel walls, as shown in figure 1. The
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lower fluid is denoted by the subscript 1, and the upper fluid by the subscript 2.
The motion may be driven by the translation of one or both walls, by gravity, by
an imposed streamwise pressure gradient, or by a combination thereof. The interface
is populated with an insoluble surfactant that is convected while diffusing over the
interface to alter the surface tension γ in a way that is determined by an appropriate
surface equation of state, to be discussed in § 2.1.

At the interface, the hydrodynamic traction undergoes a jump in both the normal
and tangential directions as a result of variations in surface tension. In particular, a
tangential jump occurs because of the spatial variation in the interfacial surfactant
concentration, Γ , which is responsible for the development of Marangoni tractions.
Our main objective is to study the stability of the flow by examining the evolution of
periodic waves in the limit of vanishing Reynolds number.

2.1. Surface equation of state

When the surfactant concentration is well below the saturation level, a linear
relationship may be assumed between the surface tension and the surfactant
concentration according to Gibbs’ law, γc − γ =Γ RT , where R is the ideal gas
constant, T is the absolute temperature, and γc is the surface tension of a clean
interface which is devoid of surfactants (e.g. Adamson 1990; Pozrikidis 2004).
Rearranging, we obtain the linear surface equation of state

γ = γc

(
1 − β

Γ

Γ0

)
, (2.1)

where β =Γ0RT/γc is a dimensionless coefficient related to the surface elasticity
by E = γcβ/Γ0, and Γ0 is a reference surfactant concentration corresponding to the
surface tension γ0 = γc (1 − β). The importance of the surfactant for the interfacial
dynamics is encapsulated in the dimensionless Marangoni number

Ma ≡ EΓ0

γ0

=
β

1 − β
, (2.2)

defined such that ∂γ /∂Γ = − Maγ0/Γ0. This relation and the linear law (2.1) may
also be used to describe small perturbations from the base concentration, Γ0, with
the understanding that the Marangoni number and associated coefficient β are no
longer physiochemical constants but express instead the surface elasticity pertinent to
the current conditions.

2.2. Surfactant transport

The evolution of the surfactant concentration is governed by the convection–diffusion
equation

dΓ

dt
+

∂(utΓ )

∂l
− w

∂Γ

∂l
= − Γ κun + Ds

∂2Γ

∂l2
, (2.3)

where ut = u · t and un = u · n are the interfacial velocities in the directions of the
tangential and normal vectors, respectively. With reference to figure 1, κ = −n · dt/dl

is the interfacial curvature in the (x, y)-plane, l is the arc length increasing in the
direction of the unit tangent vector t , and Ds is the surface surfactant diffusivity (e.g.
Wong, Rumschitzki & Maldarelli 1996; Li & Pozrikidis 1997; Yon & Pozrikidis 1998).
The derivative d/dt on the left-hand side of (2.3) expresses the rate of change of a
variable following the motion of interfacial nodes moving with the component of the
fluid velocity normal to the interface and with an arbitrary tangential velocity w(l).
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For example, if w = 0, the nodes are marker points moving normal to the interface,
whereas if w = ut the nodes are Lagrangian point particles moving with the local
fluid velocity. In the case of steady flow, and when w = 0, the first terms on the left-
and right-hand sides of (2.3) vanish, and the resulting equation expresses a balance
between interfacial convection and diffusion along the stationary interface.

2.3. Stability of the unidirectional flow

Dimensional analysis reveals that the stability of the base unidirectional flow with
a uniform surfactant concentration, Γ0, corresponding to the surface tension, γ0, is
determined by seven parameters: the channel inclination angle, θ0, the viscosity ratio,
λ= µ2/µ1, the density ratio, δ = ρ2/ρ1, the Marangoni number defined in (2.2), and
the capillary, Bond, and Péclet numbers

Ca =
ξ1hµ1

γ0

, Bo=
h2ρ1|1 − δ|g

γ0

, Pe=
ξ1h

2

Ds

. (2.4)

In the definition of the capillary and Péclet numbers, ξ1 is the shear rate of the base
flow in the lower fluid evaluated at the position of the unperturbed interface.

3. Evolution of long waves
The evolution of long waves can be described efficiently working under the

lubrication approximation. The main assumption is that appreciable streamwise
variations in the flow variables occur on a length scale that is much larger than
the channel width. Under these conditions, the Navier–Stokes equation is greatly
simplified by assuming that the fluids are in a state of nearly unidirectional motion.
The lubrication-flow model developed in this section is a generalization of the earlier
models of Ooms et al. (1985) and Pozrikidis (1998a), the new feature being the
presence of an insoluble surfactant.

3.1. Formulation

Integrating the x and y components of the equation of motion describing nearly
unidirectional flow, we find the parabolic velocity profile and associated pressure field

u(j ) = −χj + ρjgx

2µj

(y − yI )
2 + ξj (y − yI ) + uI ,

p(j ) = −
∫ x

x0

χj (η, t) dη + ρjgyy + Pj ,


 (3.1)

where j = 1, 2 denotes the lower and upper fluid (j = 1 for −h<y <yI (x, t), and
j = 2 for yI (x, t) < y < h), x0 is an arbitrary reference point, uI (x, t) is the local
interfacial velocity, and Pj are constants. The functions ξ1(x, t) and ξ2(x, t) are the
shear rates of the lower and upper fluid evaluated at the interface, while the functions
χj (x, t) ≡ − ∂p(j )/∂x express the negative of the streamwise pressure gradient within
each layer. In the inclined system of coordinates employed here, the components
of the acceleration due to gravity are gx = g sin θ and gy = −g cos θ . Though not
involved in the lubrication-flow model, the y velocity component at the interface,
vI (x, t), can be computed from the kinematic condition D[yI (x, t) − y]/Dt = 0, where
D/Dt is the material derivative, yielding vI = ∂yI /∂t +uI∂yI /∂x. The y velocity profile
can be found by integrating the continuity equation.
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Requiring the no-slip boundary condition at the walls, we set u(1)(y = −h) = U1 and
u(2)(y =h) = U2 to find

ξj = ±
[

−(χj + ρjgx)
hj

2µj

+
uI − Uj

hj

]
, (3.2)

where the plus (minus) sign applies for the lower (upper) layer, j = 1 (2), and

h1(x, t) = h + yI (x, t), h2(x, t) = h − yI (x, t) (3.3)

are the layer thicknesses. At the interface, the shear rates must satisfy the condition

µ1ξ1(x, t) =µ2ξ2(x, t) +
∂γ

∂x
, (3.4)

where γ is the surface tension, and the final term represents the Marangoni traction.
Substituting (3.2) and rearranging, we obtain the following expression for the
interfacial velocity:

uI =
2h2

µ1

r

(1 + r)2(λ + r)

{
χ1 + χ2r + ρ1gx(1 + δr) + 2

∂γ

∂x

}
+

rU1 + λU2

λ + r
, (3.5)

where r = h2(x, t)/h1(x, t) is the local instantaneous layer thickness ratio.
The normal stress is discontinuous at the interface due to surface tension. Under

the lubrication approximation, the viscous contribution may be neglected, and the
balance of normal stress simplifies to

(p1 − p2)y=yI
= P1 − P2 −

∫ x

x0

(χ1 − χ2) dη + ρ1(1 − δ)gyyI = − γ
∂2yI

∂x2
, (3.6)

where the curvature has been approximated with the negative of the second derivative
of the interface elevation on the right-hand side. Differentiating (3.6) with respect to
x and rearranging, we obtain

χ2 = χ1 − ρ1(1 − δ)gyy
′
I − γ ′y ′′

I − γy ′′′
I , (3.7)

where a prime denotes a partial derivative with respect to x. Using (3.7) to eliminate
χ2 in favour of χ1 from (3.5), we find

uI =
2h2

µ1

r

(1 + r)2(λ + r)

[
(1 + r)χ1 − ρ1(1 − δ)gyry

′
I − rγ ′y ′′

I − rγy ′′′
I + ρ1gx(1 + δr)

]

+
rU1 + λU2

λ + r
+

h2

µ1(λ + r)
γ ′. (3.8)

To derive an evolution equation for the interface, we first integrate both sides of
(3.1) with respect to y over the respective domains of definition and substitute for the
shear stresses using (3.2) to find the following expressions for the flow rates in terms
of the interfacial velocity:

Qj =
χj + ρjgx

12µj

h3
j + 1

2
(uI + Uj )hj . (3.9)

Now, a mass balance over the channel cross-section requires

∂hj

∂t
= −∂Qj

∂x
, (3.10)
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for j = 1, 2. Since h1 + h2 = 2h is constant, the total flow rate Q = Q1 + Q2 must be
independent of x, and thus

Q(t) =
χ1 + ρ1gx

12µ1

h3
1 + 1

2
(uI + U1)h1 +

χ2 + ρ2gx

12µ2

h3
2 + 1

2
(uI + U2)h2. (3.11)

Substituting the right-hand side of (3.8) for the interfacial velocity and rearranging,
we obtain

−χ1 ≡ ∂p(1)

∂x
=

µ1

D

{
−ρ1(1 − δ)gy

µ1

(
h2 + 6

λ

λ + r
h

)
h2

2y
′
I − γ

µ1

(
h2 + 6

λ

λ + r
h

)
h2

2y
′′′
I

+
ρ1gx

µ1

(
λh3

1 + δh3
2 + 6(1 + δr)

λ

λ + r
hh1h2

)
+ 12λh

(
U1 + rU2

1 + r
+

rU1 + λU2

λ + r

)

+
12

µ1

λ

λ + r
hh2γ

′ − 1

µ1

(
6h

λ

λ + r
+ h2

)
h2

2γ
′y ′′

I − 12λQ(t)

}
, (3.12)

where

D = λh3
1 + h3

2 + 12
λ

λ + r
h2h2. (3.13)

If the flow is periodic with period L, the flow rate Q(t) is evaluated by specifying the
pressure drop over one period,

�p(1)(t) = �p(2)(t) = p(i)(x + L, y, t) − p(i)(x, y, t), (3.14)

where i = 1 or 2. In the case of pure shear- or gravity-driven flow, �p(1)(t) = 0.
An evolution equation for the interfacial position, yI (x, t), arises by substituting

the expression for χ1 given in (3.12) into (3.8) and (3.9) written for j = 1, and the
resulting expression for the flow rate into (3.10) written for j = 1. The result is

∂yI

∂t
=F

(
yI , y

′
I , y

′′
I , y

′′′
I , y iv

I

)
, (3.15)

where the function F has a strongly nonlinear dependence on its arguments. Under
the premise of the lubrication approximation, the surfactant transport equation (2.3)
with w = 0 simplifies to the Eulerian one-dimensional convection–diffusion equation

∂Γ

∂t
+

∂(uIΓ )

∂x
= Ds

∂2Γ

∂x2
. (3.16)

The evolution of long waves is governed by the system of equations (3.15) and (3.16),
subject to an initial condition for the interface position and surfactant concentration.

In the context of the lubrication approximation, surface tension is important only
when the capillary pressure is comparable to, or larger than, the viscous shear stress
due to the perturbation. In the case of a periodic flow with period L, we scale the
former with γ0εh/L2 and the latter with µ1εξ1, where the dimensionless number ε

expresses the magnitude of the perturbation, and derive the condition Ca � (h/L)2.
When this condition is not met, the surface tension contributes a harmless higher-order
term that is inconsequential to the leading-order dynamics. Similarly, assuming that
Ma is of order unity, the Marangoni stress will be important only when Ca � h/L.

3.2. Linear evolution of long waves

To examine the evolution of waves whose amplitude is small compared to the
wavelength L, we carry out a linear stability analysis based on the evolution equations
derived previously in this section. Appealing to a generalized version of Squire’s
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theorem (Hesla, Pranckh & Preziosi 1986; Halpern & Frenkel 2003), we restrict
our attention to two-dimensional disturbances in the (x, y)-plane, introduce a small
parameter ε, and consider the normal-mode expansions

yI (x, t) = y0 + εA1 eik(x−ct) + c.c., Γ (x, t) = Γ0 + εΓ1 eik(x−ct)−iφ + c.c.,

where k = 2π/L is the wavenumber, c = cr +ici is the complex phase velocity, A1 and
Γ1 are disturbance amplitudes, and c.c. denotes a complex conjugate. The constant
φ expresses the phase lag between the interface and surfactant concentration wave.
Substituting the normal-mode expansions into (3.15) and (3.16) and linearizing in
the usual way, we derive a pair of evolution equations for the interface position
and surfactant concentration perturbation amplitudes A1 and Γ1, which may be
written in the matrix form B · x = 0, where x = (A1, Γ1)

T . To ensure a non-trivial
solution, we require Det(B) = 0, and obtain a quadratic equation for the complex
phase velocity, c, revealing the existence of two normal modes. In practice, to cope
with the large amount of algebra, we perform the linearization using the computer
algebraic manipulation package Maple, and run the code for individual cases with
specific parameter values.

An alternative formulation of the linear stability problem relies on the Orr–
Sommerfeld equation for the disturbance stream function, applied in the limit of
Stokes flow (Frenkel & Halpern 2002). The procedure involves introducing expansions
with respect to the reduced wavenumber kh to generate a sequence of eigenvalue
problems. Satisfaction of the boundary conditions yields a quadratic equation for c.

The dimensionless growth rate of interfacial waves, s =(µ1/γ0) kh cI , depends
on the dimensionless groups identified at the end of § 2, where cI =Im(c), and
k = 2π/L is the wavenumber. It is worth emphasizing that the structure of the base flow
influences the growth rate only insofar as it determines the interfacial shear rates ξ1

and ξ2, and this is consistent with physical intuition, which suggests that small enough
deflections of the interface from the initial position only feel the shearing effect of the
local undisturbed velocity profile in the surfactant transport equation. In the absence
of surfactants or when Ma = 0, the surviving normal mode is stable, and the rate of
decay is independent of Ca. The non-dimensional phase velocity vp = (µ1/γ0)khcR ,
where cR =Re(c), also depends on the undisturbed interfacial velocity, but if a change
is made to a frame of reference moving with the speed of the unperturbed interface,
the extra dependence disappears. To isolate the Marangoni instability, henceforth we
consider fluids with equal density, δ =1, thereby eliminating the possibly destabilizing
influence of gravity. In addition, because the diffusivity of most common surfactants
is small, we shall present results for Ds = 0 corresponding to the limit of infinite Péclet
number.

Figure 2(a, b) shows graphs of the dimensionless growth rate of the stable and
unstable normal mode, for a series of capillary numbers and a fixed Marangoni
number, generated using the Maple code. Note that, as kh → 0, the leading-order
predictions for the growth rates tend to become independent of the capillary
number. The results confirm the findings of Frenkel & Halpern (2002), showing that
introducing a surfactant produces instability over a range of wavenumbers subtended
from zero to a critical value corresponding to neutral stability. In particular, as
the capillary number approaches zero, the range of unstable wavenumbers shrinks
gradually, and the growth rates tend smoothly to finite values; thus, the limit Ca → 0
is regular. This non-singular behaviour appears at first to be at odds with the findings
of Frenkel & Halpern (2002), who identified an apparent discontinuity at Ca = 0. In
later work, Halpern & Frenkel (2003) resolved the issue by noting a non-uniformity
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Figure 2. Stability of two-layer flow for layer thickness ratio h1/h2 = 1/3, λ= 0.5, Ma = 1,
and θ0 = 0. Graphs of the dimensionless growth rate s against the wavenumber for (a) the
stable, and (b) the unstable normal mode. The capillary numbers are evenly spaced over the
range 10−3 � Ca � 1. (c) Critical wavenumber kh for neutral stability, and (d) wavenumber
corresponding to the maximum growth rate of the unstable mode.

in the small-wavenumber expansion in the limit of vanishing capillary number. In
fact, the particular form of the expansion is modified as Ca → 0, allowing the growth
rate to proceed smoothly through the limit.

Figure 2(c, d ) displays the critical wavenumber kh beneath which the flow is
unstable, and the wavenumber corresponding to the maximum growth rate of the
unstable normal mode for the given set of parameters. These graphs illustrate that
instability occurs as soon as the capillary number becomes non-zero, that is the flow
is unstable as long as the shear rate of the unperturbed flow at the interface does
not vanish. The higher the capillary number, the larger the wavenumber of the most
unstable mode. When the unperturbed interface lies in the middle of the channel,
y0 = 0 and h1 = h2, it can be shown that the complex wave speed for both modes lies
in the lower half of the complex plane under all conditions, and so the flow is stable.
Unfortunately, a compelling physical reason for this behaviour could not be identified.
In contrast, Yih (1967) showed that two-fluid plane Poiseuille flow is unstable at any
non-zero Reynolds number when the unperturbed interface lies midway between the
channel walls.

To illustrate the effect of the layer thicknesses, in figure 3 we display graphs of
the reduced growth rate, s1 = (µ1/γ0) kh1 cI , plotted against the unperturbed layer
thickness ratio, for reduced wavenumbers kh1 = 0.1, 0.05, and 0.01. Note that the
growth rate has been non-dimensionalized with respect to the fixed thickness of the
lower layer; accordingly a new capillary number has been introduced, Ca1 = ξ1h1µ1/γ0.
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Figure 3. Dominant dimensionless growth rate, s1 = µ1kh1cI /γ0, for a channel of varying
width, θ0 = 0, λ= 0.5, Ca1 = 1.0, and Ma = 1.0, and reduced wavenumbers kh1 = 0.1 (thick
line), kh1 = 0.075 (intermediate line), and kh1 = 0.05 (thin line.)

Figure 4. Effect of the viscosity ratio λ on the reduced growth rate s for Ca = 1, Ma = 1,
kh = 0.1, and r = h2/h1 = 2 and 3; (a) recessive mode, and (b) dominant mode.

For the conditions stated in the figure caption, the presence of the upper wall has
a small effect on the growth rate beyond h2/h1 � 15. For h2/h1 = 1, corresponding
to the limit y0 → 0, the curve appears to predict a zero growth rate and thus a
neutrally stable flow, which seemingly contradicts our earlier remark concerning the
case y0 = 0. In fact, the growth rate is only fractionally less than zero and thus small
perturbations do decay, but very slowly.

Since channel-flow instability in the absence of surfactants is associated with
viscosity variation or stratification, it is of particular interest to examine the
significance of the viscosity ratio λ. In figure 4, we plot the growth rates of the
two normal modes for flow in a horizontal channel, with kh = 0.1, Ca = 1, Ma =1,
and two values of the unperturbed layer thickness ratio, r ≡ h2/h1 = 2 (broken line)
and 3 (solid line). The first growth rate, plotted in figure 4(a), is apparently negative
for all values of λ, while the second growth, rate plotted in figure 4(b), is positive
for small values of λ, passes through zero at λ≈ r2, and remains negative thereafter.
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L/h: 2π 4π 8π

s −0.5357 0.0250 −0.1449 0.0250 −0.0418 0.0123
Arg(τ )/π 0.0720 1.4046 0.0903 1.4068 0.0997 1.4000
|τ | 3.9368 1.7315 4.6002 2.9557 5.4339 5.0043

Table 1. Properties of the lubrication-flow stable (left-hand columns) and unstable
(right-hand columns) normal modes for h1/h2 = 1/2, λ= 0.5, Ca = 0.6, Ma = 2 and θ0 = 0.

Figure 5. Sketch of the Marangoni flows (shown as arrows), for (a) the stable mode, and
(b) the unstable mode. The interfacial wave is shown as a solid line, and the surfactant wave
perturbation is shown as a broken line.

Thus, increasing the viscosity contrast beyond a threshold suppresses the Marangoni
instability (see also Frenkel & Halpern 2002; Halpern & Frenkel 2003).

3.3. Structure of the normal modes

It is illuminating to examine in some detail the structure of the normal modes.
Table 1 displays the growth rate, phase shift, and reduced amplitude of the surfactant
concentration wave relative to the interfacial wave for the conditions displayed in
the caption. For convenience, we have introduced the dimensionless complex group
τ ≡ Γ1h/Γ0A1 expressing the relative amplitude and phase shift of the surfactant
concentration relative to the interfacial wave. The properties of the normal modes for
other parameter values are close to those displayed in the table. The results show that
the relative amplitude of the surfactant concentration wave for the unstable normal
mode is consistently lower than that for the stable normal mode. More important,
the phase shift expressed by Arg(τ ) is close to 0.1 for the stable mode, and close to
1.4π for the unstable mode.

The significance of these results becomes evident on observing that, when the phase
lag is equal to 0 or 2π, the Marangoni stresses suppress the instability, as illustrated
in figure 5(a). Physically, the surfactant level is high and correspondingly the surface
tension is low at the crest (point A), as required by equation (2.1), while the converse
is true at point B. A local flow is thus induced from A to B in order to generate the
shear stress required to balance the Marangoni traction. In contrast, when the phase
lag is equal to π, Marangoni stresses drive a flow from the troughs to the crests of
the interfacial wave, thereby promoting the instability.

A sketch of the relative wave configuration at the mid-points kx = π/2 or 3π/2, is
shown in figure 5(b). The surface tension is higher at A and C than at B, and lower at
C and E than at D. Thus, Marangoni flows are induced in the directions of the arrows
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Figure 6. Evolution of the interface amplitude for an arbitrary sinusoidal perturbation
showing transitory growth prior to long-term decay, for h1/h2 = 2/3, λ= 0.5, Ca = 0.1, Ma = 2.0,
θ0 = 0, and kh = 1.0.

shown, and the tendency now is for some fluid to be drawn away from D toward C
and E, while fluid is also carried toward B from A and C. This qualitative reasoning
suggests that a phase lag in the range (π/2, 3π/2) is necessary for instability. It is
interesting that the actual phase lag for the unstable modes is a slight shift from 3π/2
into the unstable range. Overall, the present interpretation in terms of the phase shift
is consistent with the discussion of Frenkel & Halpern (2002) and Halpern & Frenkel
(2003).

3.4. Numerical simulations

For a given initial condition, the coupled evolution equations (3.15) and (3.16) were
integrated in time using the second-order Runge–Kutta method. Centred differences
were applied for the computation of the spatial derivatives involved in both equations,
and the time step was set at a sufficiently small value to stabilize the numerics.
Typically, 64 evenly spaced grid points were used with a dimensionless time step ξ1�t

on the order of 10−3. An independent scheme for solving the surfactant transport
equation was implemented to monitor the effect of numerical diffusion and provide
a check on accuracy (Ni 1982). This scheme essentially splits the discretized forms
of the derivatives occurring in (3.16) into sums of forward and backward differences,
resulting in a method that is second-order accurate in both time and space.

An arbitrary sinusoidal initial profile for the interface position and surfactant
concentration generally contains a combination of the two normal modes. As the
integration continues in time, eventually only the dominant unstable mode survives.
However, even with a set of purely decaying modes, the solution to a dynamical system
may exhibit significant transitory growth prior to the long-term decay, provided that
the differential operator of the linearized system exhibits non-orthogonal eigenmodes
(Trefethen et al. 1993). A sample calculation displayed in figure 6 demonstrates
this occurrence in our two-layer fluid problem for an arbitrary initial perturbation
defined by |τ | = 2.95571 and Arg(τ )=1.4068π. In this example, linear theory predicts
a pair of stable normal modes with non-dimensional growth rates s = −0.5052 and
−8.532 × 10−3. In the figure, log(A(t∗)/A(0)) is plotted against the non-dimensional
time t∗ = γ0t/hµ1, where A is the amplitude of the interfacial wave. During the early
stages of the evolution, the wave undergoes a period of growth before ultimately
decaying at a rate −8.2 × 10−3, which is close to that of the least stable mode.
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Figure 7. Evolution of the interfacial amplitude subject to a normal-mode perturbation for
h1/h2 = 1/2, λ= 0.5, Ca= 0.6, Ma = 2, and θ0 = 0. The initial data correspond to the growing
mode predicted by linear stability theory; (i) kh = 0.5, |τ | = 2.9557, Arg(τ ) = 1.4068 π, and (ii)
kh = 0.25, |τ | = 5.0043, Arg(τ ) = 1.4000π.

By a judicious choice of initial conditions, we may isolate the dominant mode at
the outset. This is achieved by using the predictions of the linear theory to furnish
starting profiles for the interfacial and surfactant concentration waves with a specific
amplitude ratio and phase shift. Results for h1/h2 = 1/2, Ca = 0.6, Ma = 2, and
wavenumbers kh = 0.5 and 0.25 are shown in figure 7, where it is clear that the
growing normal modes are picked up straightaway. Numerically fitting the slopes
of the two lines, we obtain the estimates s = 0.0249 for kh = 0.5, and s =0.0123 for
kh = 0.25, which agree with the predictions of the linear theory to the shown accuracy.

It is of interest to describe the shape of the interface after the perturbation has
grown to a finite amplitude and the evolution has exceeded the bounds imposed by
linear theory. In particular, it is of interest to examine whether the instability saturates
due to nonlinear interactions and the wave attains a fixed amplitude. Figure 8 confirms
this possibility by presenting an example where the nonlinear evolution of an arbitrary
(non-normal mode) initial perturbation leads to saturation. In figure 8(b), the saturated
interfacial and surfactant waves are both displayed together with their initial profiles.
Wave steepening and the formation of saw-tooth profiles are important features of
the motion. Similar saturation is observed for other cases considered.

4. Linear stability of Stokes flow
Halpern & Frenkel (2003) performed a linear stability analysis of the two-layer

flow for arbitrary wavenumbers, in the limit of Stokes flow. To establish a point
of reference for the lubrication-flow analysis discussed in § 3, we have repeated the
linear analysis, also including the effects of gravity and surfactant surface diffusivity.
The essential details are outlined in Appendix A. The end product is a quadratic
equation for the complex wave speed, corresponding to two normal modes. In some
special cases, including the case of equal layer thicknesses, the roots can be found
in analytical form. More generally, we use the computer algebra package Maple to
obtain the coefficients of the quadratic equation for the complex phase velocity c,
and hence the growth rates in terms of expressions that are too lengthy to reproduce.
In practice, appropriate parameter values are inserted into these exact expressions to
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Figure 8. Finite-amplitude evolution of a long wave with initial amplitude |A1|/h = 0.2, for
h1/h2 = 1/2, λ= 0.5, Ca= 0.6, Ma = 2, θ0 = 0, and L/h= 2π. (a) Graph of log(A(t∗)/A(0)) for
N = 64 (solid line) and 128 (broken) finite-difference divisions. (b) Saturated instability waves
(solid lines) arising from the initial profiles drawn with broken lines. The upper and lower sets
depict, respectively, the surfactant and interfacial waves.

obtain numerical values. When the unperturbed layer thicknesses are equal, the two
normal modes are found to be stable under any conditions.

In the absence of a surfactant or when Ma = 0, the coefficient of the quadratic
term becomes zero, leaving a linear equation corresponding to a single normal mode.
In that case, the imaginary part of c turns out to be independent of the interfacial
shear rate, that is, the growth rate is independent of the structure of the base flow and
equal to that of the interface between two superposed stationary layers in a channel
confined between two parallel plane walls. Expressions for the rate of decay in the
limit where one or both of the layer thicknesses are large compared to the channel
semi-width can be derived in analytical form (e.g. Pozrikidis 2004).

The range of validity of the lubrication approximation can be estimated by
comparing the long-wave linear growth rates deduced from the analysis of § 3.1
with the exact growth rates deduced from the linear analysis of the Stokes flow
problem. Figure 9(a) shows results for a typical case over a range of wavenumbers, in
the absence of surfactants. In view of the conditionally small wavenumber, the strong
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Figure 9. (a) Comparison of growth rates for Stokes flow (solid lines) and lubrication flow
(broken lines) for h1/h2 = 1/3, λ= 0.5, Ca= 0.57, and θ0 = 0, in the absence of surfactants,
Ma = 0. (b) The dominant mode for a contaminated interface with Ma =1.

performance of the lubrication analysis up to quite sizeable wavenumbers is striking.
In this case, the lubrication approximation yields predictions accurate to within 5%
relative error for reduced wavenumbers less than 0.45.

Figure 9(b) compares the two predictions in the presence of surfactants. Once again,
we observe good agreement between the two theories up to moderate wavenumbers. In
fact, the range of validity of the long-wave predictions appears to have been extended.
Now, the long-wave results are accurate to within 5% for reduced wavenumbers up
to 0.88, and to within 1% for reduced wavenumbers up to 0.32. Taking instead
Ca = 1.14 with all other parameters held fixed, we find that the long-wave results
are accurate to within 1% for reduced wavenumbers up to 0.31. Consequently, the
range of validity would appear to be insensitive to the capillary number. If we raise
the Marangoni number to 2.0 instead, we find that the long-wave results are accurate
to within 1% for reduced wavenumbers up to 0.36, and so the range of validity is
slightly increased. Raising the viscosity contrast does not have a significant effect. For
example, the results shown in figure 4 for kh = 0.1 are accurate to within 0.1% when
λ = 12.
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Figure 10. Growth curve for h1/h2 = 1/3, λ= 0.5, Ca = 1.0, Ma = 0.5, θ0 = 0, and kh = 1,
showing the onset of the Marangoni instability subject to a normal-mode perturbation.

5. Numerical study of Stokes flow
In the last part of this investigation, we relax the restrictions on wavelength and

amplitude imposed by the lubrication approximation and linear theory, and consider
the evolution of interfacial waves in the context of Stokes flow. In the limit of
vanishing Reynolds number, the motion of each fluid is governed by the linear
equations of Stokes flow,

0 = −∇p(j ) + µj ∇2u(j ) + ρj g, ∇ · u(j ) = 0, (5.1)

for j = 1, 2. At the interface, the surface traction suffers a discontinuity due to the
surface tension, given by

� f ≡
(
σ (1) − σ (2)

)
· n = γ κn − ∂γ

∂l
t, (5.2)

where σ (j ) is the stress tensor in each of the two fluids, and the unit normal
vector n points into the lower fluid 1, as shown in figure 1. Numerical solutions
for arbitrary amplitudes were computed based on a generalization of the boundary-
integral formulation for two-layer periodic channel flow developed by Pozrikidis
(1992, 1997a, 2003). For clarity, the essential details of this formulation are outlined
in Appendix B along with an overview of the numerical method.

The linear stability analysis of § 4 (see Appendix A) reveals that, in the absence
of surfactants, the flow is always stable. However, instability does arise for a
contaminated interface, as illustrated in figure 10 for the conditions described in the
caption. This simulation was initiated with interfacial and surfactant concentration
waves whose complex amplitudes correspond to the dominant normal mode deduced
from the Stokes-flow linear analysis, described by |τ | =7.8915 and Arg(τ )= 1.3576 π.
The straight line obtained with an approximate slope of 0.06 is in good agreement
with linear theory, predicting a slope of 0.0555.

Figure 11(a) shows the effect of the Marangoni number on the growth rate,
computed using the results of the linear analysis, revealing the occurrence of a
peak at Ma ≈ 1.2. Figure 11(b) illustrates the variation of the peak value with the
wavenumber. Increasing the viscosity ratio while holding all other parameters fixed
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Figure 11. Instability in Stokes flow for h1/h2 = 1/3, λ=0.5, Ca = 1.0, and θ0 = 0;
(a) dominant growth rate over a range of Marangoni numbers for kh = 1, (b) dependence of
the maximum growth rate on the wavenumber.

reduces the dominant growth rate until finally it attains a negative value and the flow
is stabilized.

Estimates for the growth rates of both normal modes can be obtained from
numerical simulations of the small-amplitude motion beginning with an arbitrary
set of initial conditions, and applying Prony’s method of complex exponential fitting
(e.g. Hildebrand 1974, pp. 457–463; Kay & Marple 1981; Marple 1987, pp. 303–349).
This technique has been applied successfully by Pozrikidis (1998b) to the problem of
multi-layered film flow down an inclined plane. To implement the method, we express
the disturbance in the interface position or surfactant concentration as a combination
of evolving cosine and sine waves, writing, for example,

Γ (x, t) = Γ0 + Fc(t) cos kx + Fs(t) sin kx. (5.3)

The coefficients Fc(t) and Fs(t) are computed by numerical integration from the actual
profiles obtained by the boundary-element simulation. The aim is to construct best-fit
estimates for the coefficients in the complex exponential forms

Fc(t) =
1

2

N∑
l=1

{
c(l)

c exp(−iσlt) + c.c.
}
, Fs(t) =

1

2

N∑
l=1

{
c(l)

s exp(−iσlt) + c.c.
}
, (5.4)
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Figure 12. Stokes flow simulation for Ca = 0.6, Ma =2, λ= 0.5, θ0 = 0 h1/h2 = 1/2, and
L/h=2π. (a) Evolution of the reduced amplitude log(A(t∗)/A(0)), and (b) time-series
coefficients Fc(t), Fs(t) in comparison with their estimated two-mode Prony fits Pc(t) and
Ps(t) shown with the symbols.

where N is the number of normal modes, and c.c. denotes a complex conjugate. The
complex coefficients c(l)

s , c(l)
c and growth rates σl are computed as part of the Prony

fitting process.
Figure 12 displays the wave amplitude evolution along with results of two-mode

exponential fitting, N = 2, for λ = 0.5, Ca = 0.6, Ma = 2, and L/h = 2π. The Prony
estimate of the dominant growth rate, s = 0.023, compares well with the value 0.022
found both by estimating the slope of the curve shown in figure 12(a) and from the
linear stability analysis. For the recessive mode, the Prony fitting gives s = −0.41,
which is in fair agreement with a theoretical value of −0.44. However, while the
Prony estimates of the growth rates are encouraging, corresponding estimates of the
crest speed are poor, as is the prediction of the initial wave amplitude. This weakness
was traced to the disparate magnitude of the growth rates of the normal modes.
Overall, we find that the Prony fitting method is a helpful but not definitive means
of extracting the complete properties of these slowly growing normal modes.

Next, we consider differences in behaviour predicted by the long-wave
approximation and the Stokes flow simulations for small and moderate wavenumbers.
Figure 13 compares the two predictions for h1/h2 = 1/2, λ= 0.5, Ca = 0.6 and Ma =2,
for the three wavelengths L/h= 2π, 4π, 8π, starting with an arbitrary (non-normal
mode) initial condition. The non-dimensional growth rates obtained by estimating
the slopes of the curves for L/h= π, 2π, 4π, and 8π, are s = −0.173, 0.022, 0.024, and
0.011 in the case of Stokes flow, and s = −0.241, 0.025, 0.025, and 0.011 in the case
of the lubrication approximation. These values are comparable with those quoted in
tables 1 and 2, obtained from the linear stability analysis.

Evidently, the agreement between the long-wave and Stokes-flow calculations
improves as the wavelength increases. More important, the lubrication approximation
furnishes accurate predictions of the most unstable wavenumber, thereby providing
support for the physical relevance of the results discussed in § 3. A Stokes
flow simulation for wavelengths L/h= 4π and 8π subject to an initial condition
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Figure 13. Comparison of the long-wave analysis (thin lines) and Stokes flow results (thick
lines) for h1/h2 = 1/2, λ= 0.5, Ca= 0.6, Ma =2, and θ0 = 0: (a) (upper) L/h= π, and (lower);
2π: (b) L/h=4π and 8π.

L/h: 2π 4π 8π

s −0.4415 0.0218 −0.1380 0.0241 −0.0413 0.0122
Arg(τ )/π 0.0776 1.4048 0.0923 1.4050 0.1003 1.3993
|τ | 4.5872 1.974 4.7892 3.0496 5.4932 5.0397

Table 2. Properties of the Stokes-flow stable (left-hand columns) and unstable (right-hand
columns) modes, for h1/h2 = 1/2, λ= 0.5, Ca = 0.6, Ma = 2, and θ0 = 0.

corresponding to the dominant normal modes extracted from the long-wave analysis
produces two straight lines on a log(A(t∗)/A(0)) versus time plot, similar to those
seen in figure 7, with slopes being very close to the theoretical values. The strong
performance of the long-wave approximation for small wavenumbers is further
demonstrated in figure 14, where we compare the interfacial profiles retrieved from
the results of the long-wave and Stokes simulations shown in figure 13. The profiles
are plotted at t∗ = 39.0, by which time the dominant mode has taken hold. The
agreement is good for L/h= 4π and excellent for L/h= 8π.

Thus far, we have only examined Stokes flows when the initial amplitude is small
enough for the linear theory to apply. In figure 15, we show results of two simulations
with large initial amplitudes. These calculations were performed with a fixed number
of 128 marker points, and a dimensionless time step reduced by the inverse of the
linear growth rate of 0.05. Each simulation requires several hours of CPU time on a
2GHz processor. In the first calculation, shown in figure 15(a, b), the capillary number
is set to Ca = 1.8, and the initial amplitude of the interfacial wave is |A1|/h = 0.2,
the initial amplitude of the surfactant concentration wave is |Γ1|/Γ0 = 0.2, and the
phase shift between the two waves is π. Other flow conditions are described in the
figure caption. In this case, the interface amplitude grows before exhibiting a period
of decay associated with wave steepening. The interfacial profile is shown on the right
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Figure 14. Comparison of interfacial wave profiles for Stokes flow (solid lines) and the
long-wave approximation (broken lines) for h1/h2 = 1/2, λ= 0.5, Ca = 0.6, Ma = 2, and θ0 = 0:
(a) L/h= 4π and (b) 8π. Both are shown at t∗ =39.0.

Figure 15. Evolution of the interfacial wave in Stokes flow for h1/h2 = 1/2, λ=0.5, Ma = 2,
θ0 = 0, L/h=2π, and (a, b) Ca= 1.8, (c, d ) Ca= 0.6. In (b, d ) the evolving waves (solid lines) are
shown together with their initial profiles (broken lines) at dimensionless times (b) t∗ = 1.7 and
(d ) t∗ = 65.0. The upper and lower sets are for the surfactant and interfacial waves respectively.
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Figure 16. Sketch of Marangoni flows along a saturated interfacial wave, shown as a solid
line, together with the surfactant concentration wave, shown as a broken line.

just as the wave appears to begin to overturn, at which point the numerics becomes
unreliable.

In the second simulation, displayed in figure 15(c, d ), the capillary number is
Ca = 0.6, the initial amplitudes are the same as those described for figure 15(a, b),
but the phase shift is set to 0.5932π. These conditions correspond exactly to those
used for the finite-amplitude long-wave calculation discussed earlier (see figure 8). In
this case, the wave amplitude decays and then grows before exhibiting a protracted
period of slow decay. Although results are shown only up to t∗ = 65.0, there is strong
evidence to suggest that the instability saturates. Interestingly, the curve in figure 15(c)
approaches zero for large times, meaning that the amplitude of the saturated interfacial
wave tends toward that of the initial disturbance. While the shapes of the waves are
qualitatively similar to those predicted by the long-wave calculation, the significant
difference in size of the saturated amplitude is attributed to the poorer performance
of the lubrication approximation at smaller wavenumbers and with the appearance
of steep profiles. The saturated waves appear to be robust in the sense that a
‘white-noise’ initial condition consisting of a number of Fourier modes with small,
randomly chosen amplitudes also produces nonlinear saturation after a period of
linear growth. Nonlinear simulations on extended periodic spatial intervals much
larger than those considered here may produce less-ordered non-periodic solutions
within those intervals. Such behaviour is known to occur, for example, in the case
of the Kuramoto-Sivashinsky equation (e.g. Coward, Papageorgiou & Smyrlis 1995;
Wittenberg & Holmes 1999; Halpern & Frenkel 2001). Considerable computational
effort would be required to investigate this issue, and it is left as an avenue for future
pursuit.

A physical description of the saturated wave may be attempted along the lines of
our earlier discussion on the linearly unstable modes. Figure 16 indicates with arrows
the Marangoni flow along the saturated wave displayed in figure 15(d ). According to
the surfactant wave shown above, the surface tension decreases from point A to C
and also from point E to C, leading to shear flows in both of these directions. These
flows support the wave by feeding fluid toward the steep front at C. It may be noted
that a similar qualitative picture applies for figure 15(b). In that case, we surmise that
the Marangoni flow toward the counterpart of point C is sufficient to provoke the
overturning of the wave.
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6. Discussion
We have assessed the stability of a flat interface between two viscous layers

superposed in two-dimensional channel flow. In the case of a clean interface, instability
can only arise at non-zero-Reynolds-numbers. Our analysis confirmed the discovery
of Frenkel & Halpern (2002) and Halpern & Frenkel (2003) that the addition of
surfactant in the presence of a shear flow introduces unstable modes in both the
long-wave and zero-Reynolds-number Stokes limits. The existence and severity of the
instability depends upon the values of the Marangoni number, viscosity ratio, and
capillary number.

Linear stability analysis based on the long-wave equations conducted with the
help of programmed algebraic manipulation produces results that agree well with
numerical solutions for sufficiently small disturbance amplitudes. A similar linearized
analysis for Stokes flow yields predictions that are in good agreement with boundary-
element calculations. For fixed capillary number, we have found that there exists a
range of unstable wavenumbers and that this range shrinks as the capillary number
is reduced. The effect of viscosity stratification was assessed, and it was found that
increasing the viscosity ratio eventually stabilizes the growing mode and suppresses
the Marangoni instability. Close inspection of the properties of the normal modes
allowed us to describe the physical mechanism underlying the instability, which is
in line with intuition. A similar physical argument was given by Frenkel & Halpern
(2002).

We have estimated the range of validity of the lubrication model by direct
comparison with the results of Stokes flow simulations. The consistency of the
two formulations was demonstrated, providing further confidence that the long-wave
model is successful in accurately describing the essential features of the instability.
For the Stokes-flow calculations, the properties of the normal modes were computed
via a linear stability analysis and those for the dominant modes were successfully
compared with the output from the boundary-element calculations. The Prony method
of exponential curve-fitting was also used to obtain estimates of the recessive
modes for comparison with the linearized analysis, but with moderate success.
Nonlinear effects were examined for both long-wave and Stokes-flow calculations
with disturbances of finite amplitude, and saturation of the instability was observed
for particular parameter choices, while the nonlinear features of wave steepening
were also captured. The early stages of what appears to be wave overturning were
observed in the finite-amplitude calculations. Interfacial waves that grow and saturate
due to nonlinear interactions arise in other contexts; two examples are core–annular
flow (Joseph et al. 1997) and two-layer oscillatory Couette flow (Halpern & Frenkel
2001).

In general, Marangoni tractions arise due to the presence of a surfactant or as
the result of thermocapillarity associated with interfacial temperature variations.
Previous authors have examined the stability of two-layer channel flow with
heated walls, accounting for temperature-dependent viscosity but assuming constant
interfacial tension (Pinarbasi & Liakopoulos 1996; Pinarbasi 2002). Linear stability
analysis shows that wall temperature differences may stabilize or destabilize the flow
depending, among other parameters, on the layer thickness ratio. Assessing the effect
of thermocapillarity in this more complicated case is a topic for further investi-
gation.

This research has been supported by a grant provided by the National Science
Foundation.
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Appendix A. Linear stability analysis for Stokes flow
In this appendix, we outline the linear stability analysis of the two-layer channel

flow in the presence of an insoluble surfactant, in the Stokes flow regime. In carrying
out this analysis, it is convenient to work in the inclined system of coordinates shown
in figure 1, but shift the origin of the y-axis so that the unperturbed interface is
located at y =0, the lower wall is located at y = −h1 and the upper wall is located
at y =h2 = 2h − h1. In the unperturbed configuration, the surfactant concentration is
uniform, and the fluids execute unidirectional motion parallel to the channel walls.
The x and y velocity components, denoted by u and v, are given by

u
(0)
j = −G + ρjgx

2µj

y2 + ξjy + uI , v
(0)
j = 0, (A 1)

where j = 1, 2, respectively, for the lower and upper fluid, the superscript (0) denotes
the unperturbed base state, G is the negative of the axial pressure gradient, and uI is
the interfacial velocity. To ensure continuity of shear stress at the interface, we require
that the interfacial shear rates satisfy ξ1 = λξ2, where λ= µ2/µ1 is the viscosity ratio.
The interfacial velocity and one of ξ1, ξ2 are evaluated so that the no-slip boundary
condition is satisfied at both walls. The pressure distribution of the base state is given
by

p
(0)
j (y) = −Gx + ρjgyy + P0, (A 2)

for j = 1, 2, where P0 is an inconsequential constant.
A normal-mode perturbation displaces the interface at the position given by the

real or imaginary part of y = f (x, t) = εη(x, t), where ε is a dimensionless number
whose magnitude is much less than unity, η(x, t) = A1 exp[ik(x − ct)] is the normal-
mode wave form, A1 is the complex amplitude of the interfacial wave, k = 2π/L

is the wavenumber, L is the wave length, and c is the complex phase velocity.
Correspondingly, the perturbation stream functions in the lower and upper fluid are
given by the biharmonic functions

ψ
(1)
j (x, y, t) = εφj (ŷ) exp[ik(x − ct)], (A 3)

where ŷ = ky, and the superscript (1) denotes the disturbance. The modulating
functions φj (ŷ) are given by

φj (ŷ) = a1j cosh ŷ + a2j ŷ cosh ŷ + a3j sinh ŷ + a4j ŷ sinh ŷ, (A 4)

where aij , for i = 1, 2, 3, 4, j = 1, 2, are eight complex coefficients. The associated
pressure field can be expressed in the form

p
(1)
j (x, y, t) = εµjqj (ŷ) exp[ik(x − ct)], (A 5)

for j = 1, 2. Substituting this expression into the x component of the Stokes equation
and simplifying, we find

qj (ŷ) = ik2

(
dφj

dŷ
− d3φj

dŷ3

)
. (A 6)

Kinematic compatibility requires that D(y − f )/Dt = 0, where D/Dt is the material
derivative. In the linear approximation,

∂f

∂t
+ uI

∂f

∂x
− v(1)(y = 0) = 0. (A 7)
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Substituting the preceding expressions, we find

A1 = ζa11, (A 8)

where ζ ≡ 1/(c − uI ).
The distribution of the surface surfactant concentration and surface tension

are described by the companion functions Γ (x, t) =Γ0 + εΓ1 exp[ik(x − ct)]) and
γ (x, t) = γ0 + εγ1 exp[ik(x − ct)]), where Γ0, γ0 are the uniform values corresponding
to the flat interface, and Γ1, γ1 are complex amplitudes. Since the perturbations are
assumed small, we can write γ1 = −MaΓ1, where Ma is the Marangoni number. The
linearized form of the surfactant transport equation is

∂Γ

∂t
+ u(0) ∂Γ

∂x
+ Γ0

(
∂u(1)

∂x
+

∂u(0)

∂y

∂η

∂x

)
= Ds

∂2Γ

∂x2
, (A 9)

where all terms are evaluated at the unperturbed position, y =0. Substituting the
preceding expressions for the upper fluid velocity, we find

Γ1

Γ0

=
k(a22 + a32) + ξ2a11ζ

1 + iDskζ
ζ. (A 10)

Now, the no-slip and no-penetration conditions at the lower and upper wall require[
cosh ĥ1 −ĥ1 cosh ĥ1 −sinh ĥ1 ĥ1 sinh ĥ1

−sinh ĥ1 cosh ĥ1 + ĥ1 sinh ĥ1 cosh ĥ1 −sinh ĥ1 − ĥ1 cosh ĥ1

]
· w1 = 0, (A 11)

[
cosh ĥ2 ĥ2 cosh ĥ2 sinh ĥ2 ĥ2 sinh ĥ2

sinh ĥ2 cosh ĥ2 + ĥ2 sinh ĥ2 cosh ĥ2 sinh ĥ2 + ĥ2 cosh ĥ2

]
· w2 = 0, (A 12)

where w1 = [a11, a21, a31, a41]
T , w2 = [a12, a22, a32, a42]

T , ĥ1 ≡ kh1, and ĥ2 ≡ kh2.
In the linear approximation, continuity of the x and y velocity across the interface

require, respectively,

ζ (Ξ1 − Ξ2)a11 + a21 + a31 − a22 − a32 = 0, a11 = a12, (A 13)

where Ξj ≡ ξj/k, for j = 1, 2, are new coefficients with dimensions of velocity.
The linearized shear stress balance at the interface requires

µ1

(
∂u

∂y
+

∂v

∂x

)
y=0−

= µ2

(
∂u

∂y
+

∂v

∂x

)
y=0+

+ (ρ1 − ρ2)gxA1 +
∂γ

∂x
. (A 14)

Substituting the preceding expressions and simplifying, we find

(1 − ζGx)a11 + a41 − λ(a12 + a42) = i
γ1

2µ1k
, (A 15)

where we have defined

Gx ≡ (ρ1 − ρ2)gx

2µ1k2
. (A 16)

When the channel is horizontal, Gx = 0. We recall that a11 = a12 and γ1 = −MaΓ1,
and use (A 10) to obtain

a41 = −a12(1 − λ − ζGx) + λa42 + Λ(a22 + a32 + Ξ2a12ζ ), (A 17)

where

Λ ≡ − iMaγ0ζ

2µ1(1 + iDskζ )
(A 18)

is a dimensionless complex group. In the absence of a surfactant, Λ = 0.
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The linear normal stress balance at the interface requires(
−µ1q1 + µ2q2 − 2ik2µ1

dφ1

dŷ
+ 2ik2µ2

dφ2

dŷ

)
y=0

− (ρ1 − ρ2)gyA1 = −γ0A1k
2. (A 19)

Substituting qj (y = 0) = −2ik2a2j , simplifying, and using (A 8), we find

a31 = λa32 − iΠζa12, (A 20)

where

Π ≡ 1

2µ1

[
γ0 − (ρ1 − ρ2)gy

k2

]
=

γ0

2µ1

− Gy (A 21)

is a property group with dimensions of velocity, and we have defined

Gy ≡ (ρ1 − ρ2)gy

2µ1k2
. (A 22)

To formulate the eigenvalue problem, we substitute (A 20) into (A 13), and rearrange
to find

a21 = ζ (iΠ + Ξ2 − Ξ1)a12 + a22 + (1 − λ)a32. (A 23)

Finally, we substitute (A 17), (A 20), and (A 23) into the linear system (A 11), and
obtain the equivalent system[

C11 − ζ (C12 + ΛC13) ĥ1(Λ sinh ĥ1 − cosh ĥ1)

C21 + ζ (C22 + ΛC23) (1 − Λĥ1) cosh ĥ1 + (ĥ1 − Λ) sinh ĥ1

(λ − 1)ĥ1 cosh ĥ1 + (Λĥ1 − λ) sinh ĥ1 λĥ1 sinh ĥ1

(1 − Λĥ1) cosh ĥ1 − (Λ + (λ − 1)ĥ1) sinh ĥ1 −λ(sinh ĥ1 + ĥ1 cosh ĥ1)

]
· w2 = 0,

(A 24)

where

C11 ≡ cosh ĥ1 − (1 − λ)ĥ1 sinh ĥ1,

C12 ≡ [ĥ1 cosh ĥ1(Ξ2 − Ξ1) − Gxĥ1 sinh ĥ1] + iΠ (ĥ1 cosh ĥ1 − sinh ĥ1),

C13 ≡ ĥ1Ξ2 sinh ĥ1,

C21 ≡ − sinh ĥ1 + (1 − λ)(sinh ĥ1 + ĥ1 cosh ĥ1),

C22 ≡ [(cosh ĥ1 + ĥ1 sinh ĥ1)(Ξ2 − Ξ1) − Gx(sinh ĥ1 + ĥ1 cosh ĥ1)] + iΠĥ1 sinh ĥ1

C23 ≡ −Ξ2(sinh ĥ1 + ĥ1 cosh ĥ1).




(A 25)

Appending (A 24) to (A 12), we obtain the homogeneous system M · w2 = 0, where
M is an obvious 4 × 4 complex coefficient matrix. Setting the determinant of M
to zero provides us with a quadratic equation for the complex phase velocity c,
corresponding to two normal modes. In the event of equal-density fluids and zero
surfactant diffusivity, this equation coincides exactly with equation (3.19) of Halpern &
Frenkel (2003).

A typical calculation with equal fluid densities and varying surfactant diffusivity
is shown in figure 17, where the dominant dimensionless growth rate s defined in
§ 3 is plotted against the inverse of the Péclet number α = 1/Pe. As α increases,
eventually surfactant diffusion dominates convection, and the concentration over the
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Figure 17. Effect of the surfactant diffusivity on the dominant growth rate for h1/h2 = 1/2,
λ=0.5, Ca = 0.6, Ma = 2.0, and θ0 = 0. The dashed line shows the value for a clean interface,
−0.00239.

interface tends to become uniform. The dominant growth rate approaches the value
−0.00239 for a surfactant-free interface, shown as a broken line in the figure; the
second growth rate, not shown in the figure, asymptotes toward −(h3µ1ξ1/γ0)k

2α.
Thus, in the limit α → ∞, the dynamics reduces to that for a clean interface with
uniform surface tension.

Appendix B. Boundary-element formulation
In this appendix, we outline the boundary-integral formulation of the two-fluid

channel flow discussed in § 2, and describe a boundary-element method of solution.
To develop the integral formulation, we decompose the velocity field in each fluid into
a reference component denoted by the superscript R, and a disturbance component
denoted by the superscript D, so that u(j ) = uR(j ) + uD(j ), for j = 1, 2, where the
superscripts (1) and (2) denote, respectively, the lower and upper fluid. The pressure
and stress are decomposed in a similar fashion. The reference velocity is chosen to be

uR(j )
x =

χ + ρjgx

2µj

(h2 − y2) + ξ (y − yR), uR(j )
y = 0, (B 1)

where

ξ =
U2 − U1

2h
, yR = −h

U2 + U1

U2 − U1

, (B 2)

and χ is the negative of a specified axial pressure gradient. The corresponding pressure
field is given by

pR(j ) = −χx + ρjgyy + Pj , (B 3)

where gy is the y component of the acceleration due to gravity, and Pj are constants.
The disturbance velocity and pressure satisfy the Stokes flow equations (5.1) with
the body force excluded. Since the reference velocity satisfies the no-slip boundary
condition at the channel walls, the disturbance velocity is required to vanish over
both walls.

Working in the manner described by Pozrikidis (1997a, 1998a), under the stipulation
that the disturbance flow does not induce a pressure drop across each period, we
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derive the following Fredholm integral equation of the second kind for the interfacial
velocity:

u
D(1)
j (x0) = − λ

1 + λ
�uR

j (x0) − 1

2πµ1

1

1 + λ

∫
I

Gij (x, x0)�f D
i (x)dl(x),

+
1

2π

1 − λ

1 + λ

∫ PV

u
D(1)
i (x)Tijk(x, x0)nk(x)dl(x)

− 1

2π

λ

1 + λ

∫ PV (
u

R(1)
i − u

R(2)
i

)
(x)Tijk(x, x0)nk(x)dl(x), (B 4)

where I is one period of the interface, Gij is the periodic Green’s function for channel
flow, and Tijk its associated stress tensor, and PV signifies the principal value of
the double-layer potential. The strength density of the single-layer potential over the
interface is given by � f D = � f − � f R , where the traction discontinuity � f is given
in (5.2), and the discontinuity of the reference flow is given by

� f R ≡ (σR(1) − σR(2)) · n

=

[ −�ρgyyR µ1(1 − λ)ξ − �ρgxyR

µ1(1 − λ)ξ − �ρgxyR −�ρgyyR

]
· n − (P1 − P2)n, (B 5)

with �ρ = ρ1 − ρ2 = ρ1(1 − δ).
The solution of the integral equation can be found efficiently using the boundary-

element method (e.g. Pozrikidis 2002). In the present implementation, one period of
the interface is discretized into a sequence of straight boundary elements over which
the flow variables are approximated by uniform functions. Boundary collocation is
applied then to obtain a system of linear equations for the disturbance velocities over
each element. The solution to this system is used to advance in time the position of
the nodes defining the interfacial elements, using Runge–Kutta integration.

The convection–diffusion equation for the surfactant (2.3) is treated simultaneously
using a finite-volume method (Yon & Pozrikidis 1998), wherein the interface is
described by the same set of boundary elements. The resulting ordinary differential
equations are integrated in time using an implicit method. The accuracy of the
computations was checked by implementing a separate scheme due to Ni (1982),
which is second-order accurate in both the temporal and spatial step.
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